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ABSTRACT 

A result previously known only for certain ordered Banach spaces is generalized 
to arbitrary real Banach spaces. Let ~ (U) be the Banach algebra of operators 
generated by the L-projections of a real Banach space U, and let ~ (U*) be 
the bounded operators on the dual space U* with adjoint in ~(U**) .  Then the 
adjoint operation maps ~ (U)onto~.~' (U*). In particular, any M-projection 
of U* is weak* continuous. 

In many respects the most important nonreflexive real Banach spaces are the 

L-spaces (isometric to L 1 of a measure space) and the C-spaces (isometric to 

C(K) with the uniform norm, K compact Hausdorff). These classes are mutually 

dual in the sense that the conjugate of a space in either class belongs to the other. 

More general structures in arbitrary Banach spaces, imitating the norm properties 

of L-spaces and C-spaces, have been studied in [1, 2, 4, 5]. Recall that a projection 

e of a Banach space U is called an L-projection if it satisfies 

II u II -- II eu [] + II u - e u  II 
for all u in U, and an M-projection if instead 

Ilull = max(lleull,llu-eul[ . 

The norm-closed operator algebra ~ (U) (called g'(U) in [1, 2])generated by the 

L-projections is (abstractly) a commutative real yon Neumann algebra which 

we shall call the L-structure of U. The definition of M-structure needs to be more 

delicate because the M-projections may be too scarce. One approach [1, 2] 

defines an M-ideal in U to be a closed subspace whose annihilator in U* is the 
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range of an L-projection and the centralizer ~ ( U )  (so-called because that is 

what it is when U is a C*-algebra) to be the algebra of bounded operators on 

U whose adjoints belong to L~a(U*). Another approach [5] defines an operator 

algebra called the maximal M-structure of U, which turns out to be the same as 

the centralizer. We denote this algebra here by ./#(U). The L-structure and 

the M-structure so defined are mutually dual in the sense that adjoint carries 

either structure of U into the other structure of U*. 

A striking asymmetry in these dualities appears when you try to go backwards 

against the * functor. In one direction we have the following rich, untidy sit- 

uation. 

i) A space U whose conjugate is an L-space need not be a C-space. The 

interesting profusion of spaces in this class, called Lindenstrauss spaces, have 

been studied, for example, in [11]. 

ii) An L-projection of U* need not be the adjoint of an M-projection of U. 

Indeed, if K is connected, then U = C(K) has no nontrivial M-projections, 

even though U* is an L-space. 

iii) The L-structure of U* may contain vastly more than the adjoints of 

the M-structure of U. This is illustrated, of course, by the example cited in (ii) 

but the discrepancy goes much farther. There are Lindenstrauss spaces 

with trivial M-structure. (The simplex space with countable non-Hausdorff 

structure space described at the end of [8], and the (nonseparable) G-spaces 

which are not square constructed in [6] are examples.) 

In the other direction, by contrast, we have theorems: 

(i') If U* is a C-space, then U is an L-space. 

(ii') Any M-projection of U* is the adjoint of an L-projection of U. 

(iii') The M-structure of U* comes from the L-structure of U by the adjoint. 

The first of these results is a theorem of Groethendieck [9]. The others are 

Theorems 1 and 2 below. They answer Problems 1 and 5 respectively posed 

in [2, w For a large class of ordered Banach spaces, called F-spaces, Theorem 1 

has been proved by Perdrizet [10], and Theorem 2 by Alfsen and Effros [2]. 

In what follows, U is a real Banach space, and V = U*. 

THEOREM 1. I f  e is an M-projection of V, then e = f* ,  where f is an 

L-projection of U. 

PROOF. (Adapted from [3] where it is given for the separable case.) It suffices 

to show that the subspaces eV and (I - e)V are weak* closed (see [9, p. 556]). 
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Since I - e is also an M-projection, we need only consider eV. Letting D be the  

closed unit ball of  V, it suffices to prove that eD = e V ~  D is weak* closed 

(see [7, p. 429]). 

Suppose that  {vr}~ ~ r is a net in eD converging weak* to an element v in V. 

Since the net vr - ev also lies in eV  and converges to v - ev, we may initially 

assume that  v lies in (I  - e)V, and prove that v = 0. 

Let us suppose that  v ~ 0. Since e is an M-projection, we have for large scalars 

a and 7 ~ F ,  

IIv~ + a vtl = max {[Ivyl!, a IIv It} = a Ilvll. 

o n  the other hand, {v r + av} converges to (1 + a)v. Since the norm function is 

weak* lower semicontinuous (norm closed balls are weak* closed), we have 

(1 + a)I{v I[ < lim inf [[ v r + av [[ = a [! v 1[, 

a contradiction. We conclude that v = 0, completing the proof. 

We refer the reader to [2] for the definitions of  M-codirection (denoted ]~) 

and M-domination (-< M). We say that  a cone C in V is art M-cone if we have 

(a) C i s  convex, 

(b) v [ M W for all v and w in C, 

(c) I f  v-< Mw and w ~ C then v e C. 

An M-cone must  be proper since if v I M - v, then v C M v + ( - v) = 0, and 

v = 0 We note that the M-cones may be regarded as the M-structure analogues 

of the facial cones defined in the theory of L-structure (see El]). 

Given v ~ 17, we define 

CM(v ) = { w E V : w ' < M a v  for some a__>0}. 

Since avlM by for a, b >= 0, we have from Lemma 4.1 of  [2] that CM(v) is the 

smallest M-cone containing v. 

LEMMA 1. I f  C is an M-cone in V, then "<M restricts to the intrinsic linear 

ordering on C. 

PROOF. Given v, w ~ C  with v < M w ,  we have that  w - v ~ ( M w ,  hence 

f rom (c), w - v e C  and v__<w with respect to C. Conversely, i f 0 - < v _ < w  

with respect to C, then v, w - v ~ C and (b) imply that  v I M w - v, hence v < M w. 

Given v, w ~ V with v -< M w, we define 

I v , w ]  = 

LEMMA 2. Given v and w in V with v "<M w, we have 
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Iv,w] = [0, w] n (v + [0, w]). 

PROOF. Let < be the intrinsic linear ordering on Cu(w). Then Iv, w] ~ Cu(w), 

and from Lemma 1, 

Iv, w] = {x v :v = < x = < w} 

= 

= [ 0 , w ]  (v + [0, w]).  

LEMMA 3. Given v ~( M W, the set Iv, w] is weak* compact. 

PRoof. From Lemma 2, it suffices to prove that [0, w] is weak* compact. 

However, the latter is the intersection of all norm closed balls containing 0 and w. 

Since such balls are weak* compact, the result follows. 

LEMMA 4. Suppose that {v~}r~r is a net in V which is increasing with 

respect to the partial ordering ~ M, and that vr ~ ~ w for some w ~ V. Then vr 

converges weak* to an element v, which is the -< g least upper bound for the 

set {v~}. 

PROOF. The net {v~} ties in the weak* compact set [0, w]. Let v be the weak* 

limit of a subnet of {re}. If  ro is a fixed index, and w' is any -< M upper bound 

for the set {vr}, we eventually have that the subnet lies in [Vro, w']. From Lemma 3, 

it follows that v lies in [Vro, w'], i.e., v is the < ;u  least upper bound of the set 

{vr}. This property uniquely characterizes v, hence v is the only cluster point of 

the net {vr}. From the compactness of [0,w], we conclude that vr converges 

weak* to v. 

LE~_raA 5. I f  {Sr}r ~ r is an increasing net in ,//g(V), and 0 <= Sr <_ r for 

some T ~ .Ill(V), then there is a least upper bound S for the net {St}. 

PROOF. The net {Srv} is -< ~t increasing for each v e V, and we have Srv -< M Tv. 

From Lemma 4 we may define Sv to be the weak* limit of {Srv}. It is evident 

that S is linear and Sr "<MS -<MT. From [2, Lemma 4.6], S lies in Jg(V), 

and it is clear that S is the least upper bound for the {St}. 

THEOREM 2. The map T ~ T* is an isomorphism of .Lzg(U) onto Jg(V). 

PROOF. From Lemma 6.11 of [2] or Theorem 5 of [5], T ~ T* is an isometric 

isomorphism of.oqe(U) into dc'(V). From Lemma 5, the spectrum of Jg(V) is 

extremally disconnected, hence Jg(V) is the norm closure of the algebra gen- 
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e ra ted  by the idempoten t s ,  i .e.,  the  M-pro jec t ions .  The result  thus fol lows f rom 

Theorem 1. 

REFERENCES 

1. E. Alfsen and E. Effros, Structure in real Banaeh spaces, Part I, Ann. of Math., 96 (1972), 
98-128. 

2. E. Alfsen and E. Effros, Structure in realBanaeh spaces, Part II, Ann. of Math., 96 (1972), 
129-173. 

3. F. Cunningham, Jr., LLstructure in Banach spaces, Thesis, Harvard University, 1953. 
4. F. Cunningham, Jr., L-structure in L-spaces, Trans. Amer. Math. Soc. 95 (1960), 274-299. 
5. F. Cunningham, Jr., M-structure in Banaeh spaces, Proc. Cambridge Philos. Soc. 63 

(1967), 613-629. 
6. F. Cunningham, Jr., Square Banach spaces, Proc. Cambriclge Philos. Soc. 66 (1969) 

553-558. 
7. N. Dunford and J. Schwartz, Linear Operators, Part 1, Interscience, New York, 1958. 
8. E. Effros, Structure in simplexes, Acta Math. 117 (1967), 103-121. 
9. A. Grothendieck, Une caractdrisation veetorielle-mdtrique des espaces L 1, Canad. J. Math. 

7 (1955), 552-561. 
10. F. Perdrizet, Espaces de Banach ordonnds et iddaux, J. Math. Pures Appl. 49 (1970), 

61-98. 
11. J. Lindenstrauss and D. Wulbert, On the classification of  the Banach spaces whose duals 

are L1 spaces, J. Functional Analysis 4 (1969), 332-349. 

BRYN MAWR COLLEGE 

UNIVERSITY OF PENNSYLVANIA 

ROSEMONT COLLEGE 


