M-STRUCTURE IN DUAL BANACH SPACES

BV

F. CUNNINGHAM, JR., EDWARD G. EFFROS[†], AND NINA M. ROY

ABSTRACT

A result previously known only for certain ordered Banach spaces is generalized to arbitrary real Banach spaces. Let $\mathscr{L}(U)$ be the Banach algebra of operators generated by the L-projections of a real Banach space U, and let $\mathcal{M}(U^*)$ be the bounded operators on the dual space U^* with adjoint in $\mathscr{L}(U^{**})$. Then the adjoint operation maps $\mathscr{L}(U)$ onto $\mathscr{M}(U^*)$. In particular, any M-projection of U^* is weak* continuous.

In many respects the most important nonreflexive real Banach spaces are the L-spaces (isometric to L^1 of a measure space) and the C-spaces (isometric to $C(K)$ with the uniform norm, K compact Hausdorff). These classes are mutually dual in the sense that the conjugate of a space in either class belongs to the other. More general structures in arbitrary Banach spaces, imitating the norm properties of L-spaces and C-spaces, have been studied in $[1, 2, 4, 5]$. Recall that a projection e of a Banach space U is called an *L-projection* if it satisfies

$$
\parallel u \parallel = \parallel eu \parallel + \parallel u - eu \parallel
$$

for all u in *U,* and an *M-projection* if instead

$$
\|u\| = \max\{\|eu\|,\|u - eu\|\}.
$$

The norm-closed operator algebra $\mathscr{L}(U)$ (called $\mathscr{C}(U)$ in [1, 2]) generated by the L-projections is (abstractly) a commutative real yon Neumann algebra which we shall call the *L-structure* of U. The definition of M-structure needs to be more delicate because the M-projections may be too scarce. One approach $[1, 2]$ defines an *M*-ideal in U to be a closed subspace whose annihilator in U^* is the

[†]Supported in part by the National Science Foundation. Received July 19, 1972

Vol. 14, 1973 M-STRUCTURE 305

range of an L-projection and the *centralizer* $\mathscr{L}(U)$ (so-called because that is what it is when U is a C^* -algebra) to be the algebra of bounded operators on U whose adjoints belong to $\mathscr{L}(U^*)$. Another approach [5] defines an operator algebra called the *maximal M-structure* of U, which turns out to be the same as the centralizer. We denote this algebra here by $\mathcal{M}(U)$. The L-structure and the M-structure so defined are mutually dual in the sense that adjoint carries either structure of U into the other structure of U^* .

A striking asymmetry in these dualities appears when you try to go backwards against the * functor. In one direction we have the following rich, untidy situation.

i) A space U whose conjugate is an L -space need not be a C -space. The interesting profusion of spaces in this class, called Lindenstrauss spaces, have been studied, for example, in [11].

ii) An L-projection of U^* need not be the adjoint of an M-projection of U. Indeed, if K is connected, then $U = C(K)$ has no nontrivial M-projections, even though U^* is an L -space.

iii) The L-structure of U^* may contain vastly more than the adjoints of the M -structure of U . This is illustrated, of course, by the example cited in (ii) but the discrepancy goes much farther. There are Lindenstrauss spaces with trivial M-structure. (The simplex space with countable non-Hausdorff structure space described at the end of [8], and the (nonseparable) G-spaces which are not square constructed in $\lceil 6 \rceil$ are examples.)

In the other direction, by contrast, we have theorems:

(i') If U^* is a C-space, then U is an L-space.

(ii') Any M-projection of U^* is the adjoint of an L-projection of U .

(iii') The M-structure of U^* comes from the L-structure of U by the adjoint. The first of these results is a theorem of Groethendieck [9]. The others are Theorems 1 and 2 below. They answer Problems 1 and 5 respectively posed in $[2, \frac{87}{1}]$. For a large class of ordered Banach spaces, called *F*-spaces, Theorem 1 has been proved by Perdrizet [10], and Theorem 2 by Alfsen and Effros [2].

In what follows, U is a real Banach space, and $V = U^*$.

THEOREM 1. If e is an M-projection of V, then $e = f^*$, where f is an *L-projection of U.*

PROOF. (Adapted from [3] where it is given for the separable case.) It suffices to show that the subspaces eV and $(I - e)V$ are weak* closed (see [9, p. 556]).

Since $I - e$ is also an M-projection, we need only consider eV . Letting D be the closed unit ball of V, it suffices to prove that $eD = eV \cap D$ is weak* closed (see [7, p. 429]).

Suppose that $\{v_y\}_{y \in \Gamma}$ is a net in *eD* converging weak* to an element v in V. Since the net $v_y - ev$ also lies in eV and converges to $v - ev$, we may initially assume that v lies in $(I - e)V$, and prove that $v = 0$.

Let us suppose that $v \neq 0$. Since e is an M-projection, we have for large scalars a and $\gamma \in \Gamma$,

$$
\|v_{\nu}+av\| = \max\{\|v_{\nu}\|, a\|v\|\} = a\|v\|.
$$

On the other hand, $\{v_y + av\}$ converges to $(1 + a)v$. Since the norm function is weak* lower semicontinuous (norm closed balls are weak* closed), we have

 $(1 + a) \|v\| \leq \liminf \|v_{y} + av\| = a \|v\|,$

a contradiction. We conclude that $v = 0$, completing the proof.

We refer the reader to [2] for the definitions of M-codirection (denoted \vert_{M}) and M-domination $(<_{M}$). We say that a cone C in V is an *M-cone* if we have

- (a) Cis convex,
- (b) $v \vert_W w$ for all v and w in C,
- (c) If $v \prec_M w$ and $w \in C$ then $v \in C$.

An M-cone must be proper since if $v|_M - v$, then $v \lt M v + (-v) = 0$, and $v = 0$ We note that the M-cones may be regarded as the M-structure analogues of the facial cones defined in the theory of L-structure (see $\lceil 1 \rceil$).

Given $v \in V$, we define

 $C_M(v) = \{w \in V : w \prec_M av$ for some $a \ge 0\}.$

Since $av|_M$ by for a, $b \ge 0$, we have from Lemma 4.1 of [2] that $C_M(v)$ is the smallest M -cone containing v .

LEMMA 1. *If C is an M-cone in V, then* \prec_M restricts to the intrinsic linear *ordering on C.*

PROOF. Given v, $w \in C$ with $v \prec_M w$, we have that $w-v \prec_M w$, hence from (c), $w-v\in C$ and $v\leq w$ with respect to C. Conversely, if $0\leq v\leq w$ with respect to C, then $v, w - v \in C$ and (b) imply that $v \mid_{M} w - v$, hence $v \prec_{M} w$.

Given $v, w \in V$ with $v \prec_M w$, we define

$$
[v, w] = \{x \in V : v \prec_M x \prec_M w\}.
$$

LEMMA 2. *Given v and w in V with v* $\prec_M w$, we have

Vol. 14, 1973 M-STRUCTURE 307

$$
[v,w] = [0,w] \cap (v + [0,w]).
$$

PROOF. Let \leq be the intrinsic linear ordering on $C_M(w)$. Then $[v, w] \subseteq C_M(w)$, and from Lemma 1,

$$
[v,w] = \{x \in V : v \le x \le w\}
$$

= $\{x \in V : 0 \le x \le w\} \cap \{x \in V : 0 \le x - v \le w\}$
= $[0,w] \cap (v + [0,w]).$

LEMMA 3. *Given* $v \lt_{M} w$, the set $[v, w]$ is weak* compact.

PROOF. From Lemma 2, it suffices to prove that $[0, w]$ is weak* compact. However, the latter is the intersection of all norm closed balls containing 0 and w. Since such balls are weak* compact, the result follows.

LEMMA 4. Suppose that ${v_{\rm v}}_{\rm v\,er}$ is a net in V which is increasing with *respect to the partial ordering* \lt_M , and that $v_\gamma \lt_M w$ for some $w \in V$. Then v_γ *converges weak* to an element v, which is the* \prec_M *least upper bound for the set* $\{v_{\nu}\}.$

PROOF. The net $\{v_{\nu}\}\)$ lies in the weak* compact set $[0, w]$. Let v be the weak* limit of a subnet of $\{v_y\}$. If _{ro} is a fixed index, and w' is any \prec_M upper bound for the set $\{v_{\nu}\}\$, we eventually have that the subnet lies in $[v_{\nu}, w']$. From Lemma 3, it follows that v lies in $[v_{v_0}, w']$, i.e., v is the \prec_M least upper bound of the set ${v_v}$. This property uniquely characterizes *v*, hence *v* is the only cluster point of the net $\{v_r\}$. From the compactness of [0,w], we conclude that v_r converges weak* to v .

LEMMA 5. If ${S_n}_{n \in \Gamma}$ is an increasing net in $\mathcal{M}(V)$, and $0 \leq S_n \leq T$ for *some* $T \in \mathcal{M}(V)$, then there is a least upper bound S for the net $\{S_{\gamma}\}.$

PROOF. The net $\{S_r v\}$ is \prec_M increasing for each $v \in V$, and we have $S_r v \prec_M Tv$. From Lemma 4 we may define Sv to be the weak* limit of $\{S_vv\}$. It is evident that S is linear and $S_{\gamma} \prec_{M} S \prec_{M} T$. From [2, Lemma 4.6], S lies in $\mathcal{M}(V)$, and it is clear that S is the least upper bound for the $\{S_{\gamma}\}.$

THEOREM 2. *The map* $T \to T^*$ is an isomorphism of $\mathscr{L}(U)$ onto $\mathscr{M}(V)$.

PROOF. From Lemma 6.11 of [2] or Theorem 5 of [5], $T \rightarrow T^*$ is an isometric isomorphism of $\mathscr{L}(U)$ into $\mathscr{M}(V)$. From Lemma 5, the spectrum of $\mathscr{M}(V)$ is extremally disconnected, hence $\mathcal{M}(V)$ is the norm closure of the algebra generated by the idempotents, i.e., the M-projections. The result thus follows from Theorem 1.

REFERENCES

1. E. Alfsen and E. Effros, *Structure in real Banaeh spaces, Part I,* Ann. of Math., 96 (1972), 98-128.

2. E. Alfsen and E. Effros, *Structure in realBanaeh spaces, Part II,* Ann. of Math., 96 (1972), 129-173.

3. F. Cunningham, Jr., *LLstructure in Banach spaces,* Thesis, Harvard University, 1953.

4. F. Cunningham, Jr., *L-structure in L-spaces,* Trans. Amer. Math. Soc. 95 (1960), 274-299.

5. F. Cunningham, Jr., *M-structure in Banaeh spaces,* Proc. Cambridge Philos. Soc. 63 (1967), 613-629.

6. F. Cunningham, Jr., *Square Banach spaces,* Proc. Cambriclge Philos. Soc. 66 (1969) 553-558.

7. N. Dunford and J. Schwartz, *Linear Operators,* Part 1, Interscience, New York, 1958.

8. E. Effros, *Structure in simplexes,* Acta Math. 117 (1967), 103-121.

9. A. Grothendieck, *Une caractérisation vectorielle-métrique des espaces L*¹, Canad. J. Math. 7 (1955), 552-561.

10. F. Perdrizet, *Espaces de Banach ordonnds et iddaux,* J. Math. Pures Appl. 49 (1970), 61-98.

11. J. Lindenstrauss and D. Wulbert, *On the classification of the Banach spaces whose duals are L1 spaces,* J. Functional Analysis 4 (1969), 332-349.

BRYN MAWR COLLEGE

UNIVERSITY OF PENNSYLVANIA ROSEMONT COLLEGE