M-STRUCTURE IN DUAL BANACH SPACES

BY

F. CUNNINGHAM, JR., EDWARD G. EFFROS[†], AND NINA M. ROY

ABSTRACT

A result previously known only for certain ordered Banach spaces is generalized to arbitrary real Banach spaces. Let $\mathscr{L}(U)$ be the Banach algebra of operators generated by the *L*-projections of a real Banach space *U*, and let $\mathscr{M}(U^*)$ be the bounded operators on the dual space U^* with adjoint in $\mathscr{L}(U^{**})$. Then the adjoint operation maps $\mathscr{L}(U)$ onto $\mathscr{M}(U^*)$. In particular, any *M*-projection of U^* is weak* continuous.

In many respects the most important nonreflexive real Banach spaces are the L-spaces (isometric to L^1 of a measure space) and the C-spaces (isometric to C(K) with the uniform norm, K compact Hausdorff). These classes are mutually dual in the sense that the conjugate of a space in either class belongs to the other. More general structures in arbitrary Banach spaces, imitating the norm properties of L-spaces and C-spaces, have been studied in [1, 2, 4, 5]. Recall that a projection e of a Banach space U is called an L-projection if it satisfies

$$||u|| = ||eu|| + ||u - eu||$$

for all u in U, and an M-projection if instead

$$||u|| = \max\{||eu||, ||u - eu||\}.$$

The norm-closed operator algebra $\mathscr{L}(U)$ (called $\mathscr{C}(U)$ in [1, 2]) generated by the *L*-projections is (abstractly) a commutative real von Neumann algebra which we shall call the *L*-structure of *U*. The definition of *M*-structure needs to be more delicate because the *M*-projections may be too scarce. One approach [1, 2] defines an *M*-ideal in *U* to be a closed subspace whose annihilator in *U** is the

[†]Supported in part by the National Science Foundation. Received July 19, 1972

M-STRUCTURE

range of an L-projection and the centralizer $\mathscr{L}(U)$ (so-called because that is what it is when U is a C*-algebra) to be the algebra of bounded operators on U whose adjoints belong to $\mathscr{L}(U^*)$. Another approach [5] defines an operator algebra called the maximal M-structure of U, which turns out to be the same as the centralizer. We denote this algebra here by $\mathscr{M}(U)$. The L-structure and the M-structure so defined are mutually dual in the sense that adjoint carries either structure of U into the other structure of U*.

A striking asymmetry in these dualities appears when you try to go backwards against the *functor. In one direction we have the following rich, untidy situation.

i) A space U whose conjugate is an L-space need not be a C-space. The interesting profusion of spaces in this class, called Lindenstrauss spaces, have been studied, for example, in [11].

ii) An L-projection of U^* need not be the adjoint of an M-projection of U. Indeed, if K is connected, then U = C(K) has no nontrivial M-projections, even though U^* is an L-space.

iii) The L-structure of U^* may contain vastly more than the adjoints of the M-structure of U. This is illustrated, of course, by the example cited in (ii) but the discrepancy goes much farther. There are Lindenstrauss spaces with trivial M-structure. (The simplex space with countable non-Hausdorff structure space described at the end of [8], and the (nonseparable) G-spaces which are not square constructed in [6] are examples.)

In the other direction, by contrast, we have theorems:

(i') If U^* is a C-space, then U is an L-space.

(ii') Any M-projection of U^* is the adjoint of an L-projection of U.

(iii') The *M*-structure of U^* comes from the *L*-structure of *U* by the adjoint. The first of these results is a theorem of Groethendieck [9]. The others are Theorems 1 and 2 below. They answer Problems 1 and 5 respectively posed in [2, §7]. For a large class of ordered Banach spaces, called *F*-spaces, Theorem 1 has been proved by Perdrizet [10], and Theorem 2 by Alfsen and Effros [2].

In what follows, U is a real Banach space, and $V = U^*$.

THEOREM 1. If e is an M-projection of V, then $e = f^*$, where f is an L-projection of U.

PROOF. (Adapted from [3] where it is given for the separable case.) It suffices to show that the subspaces eV and (I - e)V are weak* closed (see [9, p. 556]).

Since I - e is also an *M*-projection, we need only consider eV. Letting *D* be the closed unit ball of *V*, it suffices to prove that $eD = eV \cap D$ is weak* closed (see [7, p. 429]).

Suppose that $\{v_{y}\}_{y \in \Gamma}$ is a net in *eD* converging weak* to an element *v* in *V*. Since the net $v_{y} - ev$ also lies in *eV* and converges to v - ev, we may initially assume that *v* lies in (I - e)V, and prove that v = 0.

Let us suppose that $v \neq 0$. Since e is an M-projection, we have for large scalars a and $\gamma \in \Gamma$,

$$||v_{\gamma} + av|| = \max \{ ||v_{\gamma}||, a ||v|| \} = a ||v||.$$

On the other hand, $\{v_{\gamma} + av\}$ converges to (1 + a)v. Since the norm function is weak* lower semicontinuous (norm closed balls are weak* closed), we have

 $(1+a) ||v|| \leq \lim \inf ||v_{\gamma} + av|| = a ||v||,$

a contradiction. We conclude that v = 0, completing the proof.

We refer the reader to [2] for the definitions of *M*-codirection (denoted $|_M$) and *M*-domination (\prec_M) . We say that a cone *C* in *V* is an *M*-cone if we have

- (a) C is convex,
- (b) $v |_{M} w$ for all v and w in C,
- (c) If $v \prec_M w$ and $w \in C$ then $v \in C$.

An *M*-cone must be proper since if $v|_M - v$, then $v \prec_M v + (-v) = 0$, and v = 0 We note that the *M*-cones may be regarded as the *M*-structure analogues of the facial cones defined in the theory of *L*-structure (see [1]).

Given $v \in V$, we define

 $C_M(v) = \{ w \in V : w \prec_M av \text{ for some } a \ge 0 \}.$

Since $av|_M bv$ for $a, b \ge 0$, we have from Lemma 4.1 of [2] that $C_M(v)$ is the smallest *M*-cone containing *v*.

LEMMA 1. If C is an M-cone in V, then \prec_M restricts to the intrinsic linear ordering on C.

PROOF. Given $v, w \in C$ with $v \prec_M w$, we have that $w - v \prec_M w$, hence from (c), $w - v \in C$ and $v \leq w$ with respect to C. Conversely, if $0 \leq v \leq w$ with respect to C, then $v, w - v \in C$ and (b) imply that $v \mid_M w - v$, hence $v \prec_M w$.

Given $v, w \in V$ with $v \prec_M w$, we define

$$[v,w] = \{x \in V : v \prec_M x \prec_M w\}.$$

LEMMA 2. Given v and w in V with $v \prec_M w$, we have

Vol. 14, 1973

M-STRUCTURE

$$[v,w] = [0,w] \cap (v + [0,w]).$$

PROOF. Let \leq be the intrinsic linear ordering on $C_M(w)$. Then $[v, w] \subseteq C_M(w)$, and from Lemma 1,

$$[v,w] = \{x \in V : v \le x \le w\}$$

= $\{x \in V : 0 \le x \le w\} \cap \{x \in V : 0 \le x - v \le w\}$
= $[0,w] \cap (v + [0,w]).$

LEMMA 3. Given $v \prec_M w$, the set [v, w] is weak* compact.

PROOF. From Lemma 2, it suffices to prove that [0, w] is weak* compact. However, the latter is the intersection of all norm closed balls containing 0 and w. Since such balls are weak* compact, the result follows.

LEMMA 4. Suppose that $\{v_{\gamma}\}_{\gamma \in \Gamma}$ is a net in V which is increasing with respect to the partial ordering \prec_M , and that $v_{\gamma} \prec_M w$ for some $w \in V$. Then v_{γ} converges weak* to an element v, which is the \prec_M least upper bound for the set $\{v_{\gamma}\}$.

PROOF. The net $\{v_{\gamma}\}$ lies in the weak* compact set [0, w]. Let v be the weak* limit of a subnet of $\{v_{\gamma}\}$. If $_{\gamma_0}$ is a fixed index, and w' is any \prec_M upper bound for the set $\{v_{\gamma}\}$, we eventually have that the subnet lies in $[v_{\gamma_0}, w']$. From Lemma 3, it follows that v lies in $[v_{\gamma_0}, w']$, i.e., v is the \prec_M least upper bound of the set $\{v_{\gamma}\}$. This property uniquely characterizes v, hence v is the only cluster point of the net $\{v_{\gamma}\}$. From the compactness of [0, w], we conclude that v_{γ} converges weak* to v.

LEMMA 5. If $\{S_{\gamma}\}_{\gamma \in \Gamma}$ is an increasing net in $\mathcal{M}(V)$, and $0 \leq S_{\gamma} \leq T$ for some $T \in \mathcal{M}(V)$, then there is a least upper bound S for the net $\{S_{\gamma}\}$.

PROOF. The net $\{S_{\gamma}v\}$ is \prec_M increasing for each $v \in V$, and we have $S_{\gamma}v \prec_M Tv$. From Lemma 4 we may define Sv to be the weak* limit of $\{S_{\gamma}v\}$. It is evident that S is linear and $S_{\gamma} \prec_M S \prec_M T$. From [2, Lemma 4.6], S lies in $\mathcal{M}(V)$, and it is clear that S is the least upper bound for the $\{S_{\gamma}\}$.

THEOREM 2. The map $T \to T^*$ is an isomorphism of $\mathscr{L}(U)$ onto $\mathscr{M}(V)$.

PROOF. From Lemma 6.11 of [2] or Theorem 5 of [5], $T \to T^*$ is an isometric isomorphism of $\mathscr{L}(U)$ into $\mathscr{M}(V)$. From Lemma 5, the spectrum of $\mathscr{M}(V)$ is extremally disconnected, hence $\mathscr{M}(V)$ is the norm closure of the algebra gen-

erated by the idempotents, i.e., the M-projections. The result thus follows from Theorem 1.

References

1. E. Alfsen and E. Effros, Structure in real Banach spaces, Part I, Ann. of Math., 96 (1972), 98-128.

2. E. Alfsen and E. Effros, *Structure in real Banach spaces*, *Part II*, Ann. of Math., 96 (1972), 129-173.

3. F. Cunningham, Jr., L¹-structure in Banach spaces, Thesis, Harvard University, 1953.

4. F. Cunningham, Jr., L-structure in L-spaces, Trans. Amer. Math. Soc. 95 (1960), 274-299.

5. F. Cunningham, Jr., *M-structure in Banach spaces*, Proc. Cambridge Philos. Soc. 63 (1967), 613-629.

6. F. Cunningham, Jr., Square Banach spaces, Proc. Cambridge Philos. Soc. 66 (1969) 553-558.

7. N. Dunford and J. Schwartz, Linear Operators, Part 1, Interscience, New York, 1958.

8. E. Effros, Structure in simplexes, Acta Math. 117 (1967), 103-121.

9. A. Grothendieck, Une caractérisation vectorielle-métrique des espaces L¹, Canad. J. Math. 7 (1955), 552-561.

10. F. Perdrizet, Espaces de Banach ordonnés et idéaux, J. Math. Pures Appl. 49 (1970), 61-98.

11. J. Lindenstrauss and D. Wulbert, On the classification of the Banach spaces whose duals are L_1 spaces, J. Functional Analysis 4 (1969), 332-349.

BRYN MAWR COLLEGE

UNIVERSITY OF PENNSYLVANIA ROSEMONT COLLEGE