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ABSTRACT

A result previously known only for certain ordered Banach spaces is generalized
to arbitrary real Banach spaces. Let % (U) be the Banach algebra of operators
generated by the L-projections of a real Banach space U, and let & (U*) be
the bounded operators on the dual space U* with adjoint in & (U**). Then the
adjoint operation maps & (U) onto.# (U*). In particular, any M-projection
of U* is weak* continuous.

In many respects the most important nonreflexive real Banach spaces are the
L-spaces (isometric to L' of a measure space) and the C-spaces (isometric to
C(K) with the uniform norm, K compact Hausdorff). These classes are mutually
dualin the sense that the conjugate of a space in either class belongs to the other.
More general structures in arbitrary Banach spaces, imitating the norm properties
of L-spaces and C-spaces, have been studied in [1, 2, 4, 5]. Recall that a projection
e of a Banach space U is called an L-projection if it satisfies

Jull = Yeu] + ] u—eul
for all u in U, and an M-projection if instead

b

Ju] = max (] e

u—eul}.

The norm-closed operator algebra & (U) (called ¥(U) in [1,2]) generated by the
L-projections is (abstractly) a commutative real von Neumann algebra which
we shall call the L-structure of U, The definition of M-structure needs to be more
delicate because the M-projections may be too scarce. One approach [1, 2]
defines an M-ideal in U to be a closed subspace whose annihilator in U* is the
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range of an L-projection and the centralizer Z(U) (so-called because that is
what it is when U is a C*-algebra) to be the algebra of bounded operators on
U whose adjoints belong to £ (U*). Another approach [5] defines an operator
algebra called the maximal M-structure of U, which turns out to be the same as
the centralizer. We denote this algebra here by .#(U). The L-structure and
the M-structure so defined are mutually dual in the sense that adjoint carries
either structure of U into the other structure of U*,

A striking asymmetry in these dualities appears when you try to go backwards
against the *functor. In one direction we have the following rich, untidy sit-
uation.

i) A space U whose conjugate is an L-space need not be a C-space. The
interesting profusion of spaces in this class, called Lindenstrauss spaces, have
been studied, for example, in [11].

ii) An L-projection of U* need not be the adjoint of an M-projection of U.
Indeed, if K is connected, then U = C(K) has no nontrivial M-projections,
even though U* is an L-space.

iii) The L-structure of U* may contain vastly more than the adjoints of
the M-structure of U. This is illustrated, of course, by the example cited in (ii)
but the discrepancy goes much farther. There are Lindenstrauss spaces
with trivial M-structure. (The simplex space with countable non-Hausdorff
structure space described at the end of [8], and the (nonseparable) G-spaces
which are not square constructed in [6] are examples.)

In the other direction, by contrast, we have theorems:

(i) If U*is a C-space, then U is an L-space.

(ii") Any M-projection of U* is the adjoint of an L-projection of U.

(iii") The M-structure of U* comes from the L-structure of U by the adjoint.
The first of these results is a theorem of Groethendieck [9]. The others are
Theorems 1 and 2 below. They answer Problems 1 and 5 respectively posed
in [2, §71. For a large class of ordered Banach spaces, called F-spaces, Theorem 1
has been proved by Perdrizet [10], and Theorem 2 by Alfsen and Effros [2].

In what follows, U is a real Banach space, and V = U*.

THEOREM 1. If e is an M-projection of V, then e = f*, where f is an
L-projection of U.

Proor. (Adapted from [3] where it is given for the separable case.) It suffices
to show that the subspaces eV and (I — e)V are weak* closed (see [9, p. 556]).
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Since I — e is also an M-projection, we need only consider eV. Letting D be the
closed unit ball of V, it suffices to prove that eD = eV N D is weak* closed
(see [7, p. 429]).

Suppose that {v,}, . is a net in eD converging weak* to an element v in V.
Since the net v, — ev also lies in eV and converges to v — ev, we may initially
assume that v lies in (I — e)V, and prove that v = 0,

Let us suppose that v # 0. Since e is an M-projection, we have for large scalars
aand yeT,

o)+ av]| = max (o, |, af o]} = afo].

On the other hand, {v, + av} converges to (1 4 a)v. Since the norm function is
weak* lower semicontinuous (norm closed balls are weak* closed), we have

(1+a)”v“ < lim inf Hvy+auH = aHv‘

Y

a contradiction. We conclude that v = 0, completing the proof.

We refer the reader to [2] for the definitions of M-codirection (denoted |,)
and M-domination (< /). We say that a cone C in V is an M-cone if we have

(a) Cis convex,

b) v‘Mw forallyvand win C,

(c) Ifv<ywand weC thenveC.
An M-cone must be proper since if le —v,then v<, v + (—v) =0, and
v = 0. We note that the M-cones may be regarded as the M-structure analogues
of the facial cones defined in the theory of L-structure (see [1]).

Given v e V, we define

Culv) = {weV:w< yav for some a = 0}.
Since ale bv for a, b = 0, we have from Lemma 4.1 of [2] that C,,(v) is the
smallest M-cone containing v.
LemMMA 1. If C is an M-cone in V, then <, restricts to the intrinsic linear
ordering on C,

Proor. Given v, weC with v <, w, we have that w—v <, w, hence
from (¢), w—~veC and v £ w with respect to C. Conversely, if 0 v < w
with respect to C, then v, w — v e C and (b) imply that v | uW — 0, hence v <y, w.

Given v, we V with v < ,,w, we define

[v,w] = {xeViv< yx <pyw}

LEMMA 2. Given v and w in V with v <, w, we have
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[v,w] = [0,w] N (v + [0, w]).

ProoF. Let < be the intrinsic linear ordering on Cy(w). Then [v,w] = Cp(w),
and from Lemma 1,

[v,w] = {xeVw < x < w}

{xeV:0<xwin{xeV:0<x—vw}

= [0,w] N (v + [0,w]).
LeMMA 3. Given v < yw, the set [v,w] is weak* compact.

Proor. From Lemma 2, it suffices to prove that [0, w] is weak* compact.
However, the latter is the intersection of all norm closed balls containing 0 and w.
Since such balls are weak* compact, the result follows.

LeMMA 4. Suppose that {v,},.r is a net in V which is increasing with
respect to the partial ordering < ), and that v, <y w for some we V. Then v,
converges weak* to an element v, which is the <, least upper bound for the
set {v,}.

Proor. The net {p,} lies in the weak* compact set [0,w]. Let v be the weak*
limit of a subnet of {v,}. If , is a fixed index, and w’ is any <), upper bound
for the set {v,}, we eventually have that the subnet liesin [v,,, w"]. From Lemma 3,
it follows that v lies in [v,,, w'], i.e., v is the <, least upper bound of the set
{v,}. This property uniquely characterizes v, hence v is the only cluster point of
the net {v,}. From the compactness of [0,w], we conclude that v, converges
weak* to v.

Lemma 5. If {S,},cr is an increasing net in M(V),and 0 £ S, < T for
some T € M(V), then there is a least upper bound S for the net {S,}.

ProOF. Thenet {S,v}is < increasing for eachve V,and wehave S,v <, To.
From Lemma 4 we may define Sv to be the weak* limit of {S,v}. It is evident

that S is linear and S, <, S <, T. From [2, Lemma 4.6], S lies in .#(V),
and it is clear that S is the least upper bound for the {S,}.

THEOREM 2. The map T — T* is an isomorphism of £(U) onto (V).

Proor. From Lemma 6.11 of [2] or Theorem 5 of [5], T — T* is an isometric
isomorphism of & (U) into #(V). From Lemma 5, the spectrum of (V) is
extremally disconnected, hence (V) is the norm closure of the algebra gen-
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erated by the idempotents, i.e., the M-projections. The result thus follows from
Theorem 1,
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